Mapping Decomposition: A Preliminary Study of Non-Destructive Detection of Simulated body Fluids in the Shallow Subsurface

Author:

Barone Pier MatteoORCID,Matsentidi Danielle,Mollard Alex,Kulengowska Nikola,Mistry Mohit

Abstract

The processes of decomposition that the body will have after the time of death are peculiar and complex. The body swells and expels gases and fluids, and the flesh decays. It also attracts many insects and scavengers. We know that these fluids are nutrients for the vegetation, and if the body is inhumed in the subsurface, they allow a rapid crop growth that remote sensors can mark. During forensic investigations, mapping the fluid migration in the subsurface can help reconstruct the genesis of a clandestine grave. Several studies show how different remote sensors and analyses can be sensitive to human burials. This paper presents a preliminary experiment studying the fluid dispersion in the subsurface using simulated body fluids in a shallow grave and detecting it through the ground penetrating radar (GPR) technique (given its ability to detect dielectric constant changes in the investigated media) and other remote sensing techniques. Although the simulation of the body fluids related to the dielectric constant was accurate and allowed us to better understand how decomposition in the subsurface does not always migrate in the way that was initially expected (toward gravity), other typical characteristics of the body fluids, other soils and external factors were left out and would be studied in future simulations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference53 articles.

1. Forensic GIS: The Role of Geospatial Technologies for Investigating Crime and Providing Evidence,2014

2. Fundamentals of Remote Sensing and Airphoto Interpretation/Thomas Eugene Avery, Graydon Lennis Berlin;Avery,1992

3. Satellite Data and Environmental Law: Technology Ripe for Litigation Application;Hodge;Pace Environ. Law Rev.,1997

4. Low-Cost CSI Using Forensic GPR, 3D Reconstruction, and GIS

5. Detection of Single Burials Using Multispectral Drone Data: Three Case Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3