Diversity of Ectomycorrhizal Fungal Communities in Four Types of Stands in Pinus massoniana Plantation in the West of China

Author:

Li Xiangjun,Kang Wensi,Liu Size,Yin Haifeng,Lyu Qian,Su Yu,Liu Junjie,Liu Jiangli,Fan Chuan,Chen Gang,Zhao Kuangji,Li Xianwei

Abstract

Ectomycorrhizal (ECM) fungi can form symbioses with plant roots, which play an important role in regulating the rhizosphere microenvironment. As a broad-spectrum ECM tree species, Pinus massoniana forms symbiotic relationship called mycorrhiza with various ECM fungal species. In this study, four types of forests were selected from a 38-year-old Pinus plantation in eastern Sichuan, namely, pure P. massoniana forest (MC), P. massoniana mixed with Cunninghamia lanceolata forest (MS), P. massoniana–Cryptomeria fortunei forest (ML), and P. massoniana–broadleaved forest (MK), the species mixture ratio of all forests was 1:1. The ITS2 segment of ECM root tip sequenced by high-throughput sequencing using the Illumina MiSeq sequencing platform. (1) The ECM fungi of these four P. massoniana forests showed similar dominant genera but different relative abundances in community structure during the three seasons. (2) The alpha diversity index of ECM fungi was significantly influenced by season and forest type. (3) Soil pH, soil organic matter (SOM), total nitrogen (TN), C/N ratio, and total phosphorus (TP) influenced the ECM fungal community structure in different seasons. In summary, there were significant differences in ECM fungal communities among different forest types and different seasons; the colonization rate of ECM fungal in P. massoniana–Cunninghamia lanceolata was the highest, so we infer that Cunninghamia lanceolata is the most suitable tree species for mixed with P. massoniana in three mixture forests.

Funder

National Key Research and Development Program of China

German Government loans for Sichuan. Forestry Sustainable Management

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3