Affiliation:
1. School of Automation, Wuhan University of Technology, Wuhan 430070, China
2. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract
We present a novel approach for achieving high-precision trajectory tracking control in an unmanned surface vehicle (USV) through utilization of receding horizon reinforcement learning (RHRL). The control architecture for the USV involves a composite of feedforward and feedback components. The feedforward control component is derived directly from the curvature of the reference path and the dynamic model. Feedback control is acquired through application of the RHRL algorithm, effectively addressing the problem of achieving optimal tracking control. The methodology introduced in this paper synergizes with the rolling time domain optimization mechanism, converting the perpetual time domain optimal control predicament into a succession of finite time domain control problems amenable to resolution. In contrast to Lyapunov model predictive control (LMPC) and sliding mode control (SMC), our proposed method employs the RHRL controller, which yields an explicit state feedback control law. This characteristic endows the controller with the dual capabilities of direct offline and online learning deployment. Within each prediction time domain, we employ a time-independent executive–evaluator network structure to glean insights into the optimal value function and control strategy. Furthermore, we substantiate the convergence of the RHRL algorithm in each prediction time domain through rigorous theoretical proof, with concurrent analysis to verify the stability of the closed-loop system. To conclude, USV trajectory control tests are carried out within a simulated environment.
Reference32 articles.
1. Autopilot system design on monohull USV- LSS01 using PID-based sliding mode control method;Alim;IOP Conf. Ser. Earth Environ. Sci.,2021
2. Particle swarm optimization for pid usv heading stability control;Guo;Ship Sci. Technol.,2019
3. Feedback motion planning of unmanned surface vehicles via random sequential composition;Ege;Trans. Inst. Meas. Control,2019
4. Dynamic Feedback Controller Based on Optimized Switching of Multiple Identification Models for Course Control of Unmanned Surface Vehicle;Huanyin;Robot,2013
5. Yan, D., Xiao, C., and Wen, Y. (July, January 26). Pod Propulsion Small Surface USV Heading Control Research. Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献