Abstract
In this paper, a dual-band graphene coplanar waveguide antenna is designed for smart cities and internet of things applications. A graphene film is chosen as the conductive material for the radiation patches and ground plane with a thickness of 240 μm and an electric conductivity of 3.5 × 105 S/m. The dielectric is glass with a dielectric permittivity of 6 and a thickness of 2 mm. The implementation of the antenna on glass permits the integration of the antenna in smart cities and IoT applications. This antenna is based on two trapezoidal patches that generate the dual-band behavior. The overall dimensions of the antenna are 30 mm × 30 mm × 2 mm. The reflection coefficient, gain, and radiation patterns were measured and compared with the simulations. The antenna covers two frequency bands; the lower band covers the 2.45 GHz ISM band, and the upper band range covers from 4 to 7 GHz.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献