Three-Dimensional Wave-Induced Dynamic Response in Anisotropic Poroelastic Seabed

Author:

Hsu Cheng-JungORCID,Hung ChingORCID

Abstract

This paper presents a novel analytical solution, which is developed for investigating three-dimensional wave-induced seabed responses for anisotropic permeability. The analytical solution is based on the assumption of the poroelastic and the u − p dynamic form, which considers the inertia force of the soil skeleton. In this paper, the problem is regarded as an eigenvalue problem through a first-order ordinary differential equation in matrix form. The problematic eigenvector involved in the solution is dealt with using numerical computation, and a process is proposed to implement the present solution for the desired dynamic response. A verification, which is compared with two existing solutions, demonstrates an agreement with the present solution. The results show that the amplitude profile of seabed response for a shorter wave period varies significantly. A comparison between the anisotropic and transverse isotropic, as well as isotropic permeabilities reveals that the error of vertical effective stress on the seabed bottom can reach 74 . 8 % for the isotropic case. For anisotropic permeability, when the wave direction is parallel to the higher horizontal permeability direction, the amplitude profiles of pore pressure and vertical effective stress exhibit the greatest dissipation and increment, respectively. For transverse isotropic permeability, the vertical effective stress is independent of the wave direction, which results in the two horizontal effective stresses on the seabed bottom being identical to each other and independent of the wave direction. Our comprehensive analysis provides insight into the effect of anisotropic permeability on different wave periods and wave directions.

Funder

Ministry of Education, Taiwan

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3