Small-Signal Modeling and Stability Analysis of a Grid-Following Inverter with Inertia Emulation

Author:

Schramm Dall’Asta Matheus1ORCID,Brunelli Lazzarin Telles1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil

Abstract

Power-converter-based energy-harvesting and storage systems are becoming more prevalent in the electrical grid, replacing conventional synchronous generators. Consequently, grid inertia is diminishing, and to address this, inverter-based energy conversion systems are required by grid codes to provide frequency control support to the main grid. This is undertaken to increase the equivalent inertia of the system and reduce frequency variations. This type of control is necessary and designed for handling large system transients. However, it also impacts the small-signal stability of the grid-connected converters. To investigate this issue, this paper addresses the influence of synthetic inertia control on the output admittance of a grid-following inverter and its interaction with the grid equivalent impedance. A synchronous reference frame dynamic model of the grid-following inverter closed-loop system is obtained and linearized at an operating point to analyze the small-signal stability of the low-switching frequency inverter. The models are validated through numerical simulations. The analysis verifies the interactions of the internal control loops, such as the AC current control with voltage feedforward, DC-link voltage control with power-feedforward, phase-locked loop, and AC voltage control with inertial control. Additionally, the interactions between the output admittance of the inverter and the grid impedance are verified using the generalized Nyquist criterion. The stability regions are validated through simulations, and the results show that the system gain margin is reduced for increasing values of synthetic inertia gain and lower grid short-circuit ratios. Furthermore, there is a limit in the voltage and power-feedforward bandwidth to avoid degrading the system stability when utilizing the synthetic inertia control.

Funder

Brazilian National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3