Experimental Investigation of the Improvement Potential of a Heat Pump Equipped with a Two-Phase Ejector

Author:

Singmai Wichean12ORCID,Onthong Kasemsil12,Thongtip Tongchana12ORCID

Affiliation:

1. Advanced Refrigeration and Air Conditioning Laboratory (ARAC), Department of Teacher Training in Mechanical Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

2. Thermal and Fluid Laboratory (TFL), Department of Teacher Training in Mechanical Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

In this paper, an experimental investigation of the performance improvement of a heat pump equipped with a two-phase ejector, called an “ejector–expansion heat pump (EEHP)”, is proposed. The system performance of the EEHP is compared with that of a vapor-compression heat pump (VCHP). The improvement potential is determined and discussed. The heat pump test system based on a water-to-water heat pump that can experiment with both the EEHP and the VCHP is constructed. A two-phase ejector with a cooling load of up to 2500 W is installed for the experiment. The results show that the EEHP always produces a higher heating rate and COPHP than the VCHP under the specified working conditions. The heating COPHP is increased by 5.7–11.6% depending on the working conditions. It is also found that, under the same heat sink and heat source temperature, the EEHP can produce a lower compressor discharge temperature and a lower compressor pressure ratio than the VCHP. This is evidence that the two-phase ejector can provide the compressor with better working characteristics, which yields a longer compressor lifetime. It is demonstrated that the expansion pressure ratio is key to the performance of the EEHP. A larger expansion pressure ratio yields greater improvement potential when compared with the VCHP.

Funder

King Mongkut’s University of Technology, North Bangkok

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3