Regression Models and Shape Descriptors for Building Energy Demand and Comfort Estimation

Author:

Storcz Tamás12ORCID,Várady Géza23ORCID,Kistelegdi István4,Ercsey Zsolt12ORCID

Affiliation:

1. Department of Systems and Software Technologies, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány Street 2, H-7624 Pécs, Hungary

2. Autonomous Technologies and Drones Research Team, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány Street 2, H-7624 Pécs, Hungary

3. Department of Technical Informatics, Faculty of Engineering and Information Technology, University of Pécs, Boszorkány Street 2, H-7624 Pécs, Hungary

4. Department of Energy Design, Ybl Miklós Faculty of Architecture and Civil Engineering, Óbuda University, Thököly út 74, H-1146 Budapest, Hungary

Abstract

Optimal building design in terms of comfort and energy performance means designing and constructing a building that requires the minimum energy demand under the given conditions while also providing a good level of human comfort. This paper focuses on replacing the complex energy and comfort simulation procedure with fast regression model-based processes that encounter the building shape as input. Numerous building shape descriptors were applied as inputs to several regression models. After evaluating the results, it can be stated that, with careful selection of building geometry describing design input variables, complex energy and comfort simulations can be approximated. Six different models with five different building shape descriptors were tested. The worst results were around R2 = 0.75, and the generic results were around R2 = 0.92. The most accurate prediction models, with the highest level of accuracy (R2 > 0.97), were linear regressions using 3rd power and dense neural networks using 1st power of inputs; furthermore, averages of mean absolute percentage errors are 1% in the case of dense neural networks. For the best performance, the building configuration was described by a discrete functional point cloud. The proposed method can effectively aid future building energy and comfort optimization processes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3