The Condensation Characteristics of Propane in Binary and Ternary Mixtures on a Vertical Plate

Author:

Zhang Lili1,Cui Yongzhang1,Mao Wenlong2,Sheng Xiangzhuo2,Zhang Guanmin3

Affiliation:

1. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Shandong Special Equipment Inspection Institute Group Co., Ltd., Jinan 250101, China

3. School of Energy and Power Engineering, Shandong University, Jinan 250061, China

Abstract

Natural gas is one of the most common forms of energy in our daily life, and it is composed of multicomponent hydrocarbon gas mixtures (mainly of methane, ethane and propane). It is of great significant to reveal the condensation mechanism of multicomponent mixtures for the development and utilization of natural gas. A numerical model was adopted to analyze the heat and mass transfer characteristics of propane condensation in binary and ternary gas mixtures on a vertical cold plate. Multicomponent diffusion equations and the volume of fluid method (VOF) are used to describe the in-phase and inter-phase transportation. The conditions of different wall sub-cooled temperatures (temperature difference between the wall and saturated gas mixture) and the inlet molar fraction of methane/ethane are discussed. The numerical results show that ethane gas is more likely to accumulate near the wall compared with the lighter methane gas. The thermal resistance in the gas boundary layer is one hundred times higher than that of the liquid film, revealing the importance of diffusion resistance. The heat transfer coefficients increased about 11% (at ΔT = 10 K) and 7% (at ΔT = 40 K), as the molar fraction of ethane increased from 0 to 40%. Meanwhile, the condensation heat transfer coefficient decreased by 53~56% as the wall sub-cooled temperature increased from 10 K to 40 K.

Funder

Shandong Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3