Potential Domestic Energy System Vulnerabilities from Major Exports of Green Hydrogen: A Case Study of Australia

Author:

Curtis Andrew J.1,McLellan Benjamin C.1ORCID

Affiliation:

1. Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan

Abstract

Australia has clear aspirations to become a major global exporter of hydrogen as a replacement for fossil fuels and as part of the drive to reduce CO2 emissions, as set out in the National Hydrogen Strategy released in 2019 jointly by the federal and state governments. In 2021, the Australian Energy Market Operator specified a grid forecast scenario for the first time entitled “hydrogen superpower”. Not only does Australia hope to capitalise on the emerging demand for zero-carbon hydrogen in places like Japan and South Korea by establishing a new export industry, but it also needs to mitigate the built-in carbon risk of its export revenue from coal and LNG as major customers, such as Japan and South Korea, move to decarbonise their energy systems. This places hydrogen at the nexus of energy, climate change mitigation and economic growth, with implications for energy security. Much of the published literature on this topic concentrates on the details of what being a major hydrogen exporter will look like and what steps will need to be taken to achieve it. However, there appears to be a gap in the study of the implications for Australia’s domestic energy system in terms of energy security and export economic vulnerability. The objective of this paper is to develop a conceptual framework for the implications of becoming a major hydrogen exporter on Australia’s energy system. Various green hydrogen export scenarios for Australia were compared, and the most recent and comprehensive was selected as the basis for further examination for domestic energy system impacts. In this scenario, 248.5 GW of new renewable electricity generation capacity was estimated to be required by 2050 to produce the additional 867 TWh required for an electrolyser output of 2088 PJ of green hydrogen for export, which will comprise 55.9% of Australia’s total electricity demand at that time. The characteristics of comparative export-oriented resources and their interactions with the domestic economy and energy system are then examined through the lens of the resource curse hypothesis, and the LNG and aluminium industries. These existing resource export frameworks are reviewed for applicability of specific factors to export-oriented green hydrogen production, with applicable factors then compiled into a novel conceptual framework for exporter domestic implications from large-scale exports of green hydrogen. The green hydrogen export superpower (2050) scenario is then quantitatively assessed using the established indicators for energy exporter vulnerability and domestic energy security, comparing it to Australia’s 2019 energy exports profile. This assessment finds that in almost all factors, exporter vulnerability is reduced, and domestic energy security is enhanced by the transition from fossil fuel exports to green hydrogen, with the exception of an increase in exposure of the domestic energy system to international market forces.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference83 articles.

1. Curtis, A., and McLellan, B. (2023). Framework for Assessment of the Economic Vulnerability of Energy-Resource-Exporting Countries. Resources, 12.

2. (2021, September 07). BP Statistical Review of World Energy 2021. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

3. Ministry of Economy Trade and Industry Japan Agency for Natural Resources and Energy (2021). Outline of Strategic Energy Plan, Agency for Natural Resources and Energy.

4. (2023, June 06). Japan to Invest 15 tril. Yen in Hydrogen Supply for Decarbonization. Available online: https://mainichi.jp/english/articles/20230606/p2g/00m/0na/019000c.

5. Energy superpower-or sustainable energy leader?;Smith;CSIRO ECOS,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3