Modification of Simple Antenna Pattern Models for Inter-Beam Interference Assessment in Massive Multiple-Input–Multiple-Output Systems

Author:

Wojtuń Jarosław1ORCID,Ziółkowski Cezary1ORCID,Kelner Jan M.1ORCID

Affiliation:

1. Institute of Communications Systems, Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland

Abstract

The occurrence of cross-beam interference in the received signal is one of the main problems that limit the possibilities of massive multiple-input–multiple-output technology (massive-MIMO) in fifth-generation (5G) systems. Thus, the evaluation of the level of this interference is one of the most important procedures in the spatial planning of currently wireless networks. We propose a novel modification of simple antenna pattern models, which is based only on changing the directivity of real antenna system patterns. This approach is independent of the antenna system’s type, structure, and analytical description. Based on the developed modification, the original methodology for assessing the signal-to-interference ratio (SIR) from adjacent beams of a common antenna system is presented. The change in the radiation direction and the accompanying change in the complex shape and parameters of the real antenna beam pattern is one of the problems that significantly hinders the evaluation of the analyzed interference. Hence, in the presented methodology, we propose using our modification. In this case, the modification is reduced to a proportional change in the directivity concerning the real antenna system, which results from a change in the beam direction. The simulation studies used a multi-ellipsoidal propagation model and a real massive MIMO antenna pattern description from 3GPP. For the SIR error analysis, the 3GPP pattern is used as a reference. The simulation results show that modifying simple antenna pattern models allows us to obtain an SIR error of no more than 3 dB and 0.1 dB under line-of-sight (LOS) and non-LOS conditions, respectively.

Funder

National Science Center (NCN) Poland

Military University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3