Vegetation Structure, Species Composition, and Carbon Sink Potential of Urban Green Spaces in Nagpur City, India

Author:

Lahoti ShrutiORCID,Lahoti Ashish,Joshi Rajendra KumarORCID,Saito OsamuORCID

Abstract

Nagpur is rapidly urbanizing, and in the process witnessing decline in its green status which is one of the identities of the city. The study aims to understand the current species diversity, composition and structure in different classes of greens prevalent in the city. As urban green spaces (UGS) are also reservoirs of carbon stock, the study estimates their biomass. Through rigorous field work, data were collected from 246 sample plots across various UGS classes as pre-stratification. Then the biomass was estimated using non-destructive method with species-specific equation. The diversity of tree species recorded in UGS varies, with high diversity recorded in avenue plantation and institutional compounds. The overall variation in species composition among UGS classes was 36.8%. While in managed greens the species composition was similar, in institutional greens and forest it was different. Particularly, in forest the evenness was high with low diversity and low species richness. The structural distribution indicate lack of old trees in the city, with high number of tree species between diameter classes of 10–40 cm. Biomass was recorded high in road-side plantations (335 t ha−1) and playgrounds (324 t ha−1), and trees with bigger girth size where the main contributors. The dominant species indicates that high growth rate, tolerance to drought and pollution are the key attributes considered for species selection by local authorities. Though the city holds green image, vegetation along the avenues and institutions are stressed, exposed, and threatened by felling activities for grey infrastructure expansions. In such scenario, protection and preservation of older trees is crucial to maintain the carbon stock of the city. In addition, local authorities need to focus on effective afforestation programs through public participation to achieve high survival rate and reduce the maintenance cost. For species selection in addition to phenology and growth rate, tree biomass and life span needs to be considered to significantly enhance the urban environment and increase the benefits derived from UGS.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3