TransConv: Transformer Meets Contextual Convolution for Unsupervised Domain Adaptation

Author:

Liu Junchi1ORCID,Zhang Xiang1,Luo Zhigang1

Affiliation:

1. School of Computer Science, National University of Defense Technology, Changsha 410073, China

Abstract

Unsupervised domain adaptation (UDA) aims to reapply the classifier to be ever-trained on a labeled source domain to a related unlabeled target domain. Recent progress in this line has evolved with the advance of network architectures from convolutional neural networks (CNNs) to transformers or both hybrids. However, this advance has to pay the cost of high computational overheads or complex training processes. In this paper, we propose an efficient alternative hybrid architecture by marrying transformer to contextual convolution (TransConv) to solve UDA tasks. Different from previous transformer based UDA architectures, TransConv has two special aspects: (1) reviving the multilayer perception (MLP) of transformer encoders with Gaussian channel attention fusion for robustness, and (2) mixing contextual features to highly efficient dynamic convolutions for cross-domain interaction. As a result, TransConv enables to calibrate interdomain feature semantics from the global features and the local ones. Experimental results on five benchmarks show that TransConv attains remarkable results with high efficiency as compared to the existing UDA methods.

Publisher

MDPI AG

Reference55 articles.

1. He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27–30). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

2. Deep visual domain adaptation: A survey;Wang;Neurocomputing,2018

3. Kuroki, S., Charoenphakdee, N., Bao, H., Honda, J., Sato, I., and Sugiyama, M. (February, January 27). Unsupervised domain adaptation based on source-guided discrepancy. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA.

4. Xu, T., Chen, W., Wang, P., Wang, F., Li, H., and Jin, R. (2021). Cdtrans: Cross-domain transformer for unsupervised domain adaptation. arXiv.

5. Yang, J., Liu, J., Xu, N., and Huang, J. (2023, January 2–7). Tvt: Transferable vision transformer for unsupervised domain adaptation. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3