Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size

Author:

Mlih Rawan,Liang Yan,Zhang MiaoyueORCID,Tombácz EtelkaORCID,Bol RolandORCID,Klumpp Erwin

Abstract

Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L−1) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3