Effect of Tube Diameters and Functional Groups on Adsorption and Suspension Behaviors of Carbon Nanotubes in Presence of Humic Acid

Author:

Fang MengyuanORCID,Zhao TianhuiORCID,Zhao XiaoliORCID,Tang ZhiORCID,Liu ShashaORCID,Wang JunyuORCID,Niu LinORCID,Wu FengchangORCID

Abstract

The adsorption and suspension behaviors of carbon nanotubes (CNTs) in the water environment determine the geochemical cycle and ecological risk of CNTs and the compounds attached to them. In this study, CNTs were selected as the research object, and the effect of tube diameters and functional groups (multiwall CNTs (MWNTs) and hydroxylated MWNTs (HMWNTs)) on the adsorption and suspension behaviors of the CNTs in the presence of humic acid (HA) was systematically analyzed. The results indicate that HA adsorption decreased with the increase in the solution pH, and the adsorption amount and rate were negatively correlated with the tube diameter of the CNTs. The surface hydroxylation of the CNTs prevented the adsorption of HA, and the maximum adsorption amounts on the MWNTs and HMWNTs were 195.95 and 74.74 mg g−1, respectively. HA had an important effect on the suspension of the CNTs, especially for the surface hydroxylation, and the suspension of the CNTs increased with the increase in the tube diameter. The characteristics of the CNTs prior to and after adsorbing HA were characterized by transmission electron microscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. The results indicate that surface hydroxylation of the CNTs increased the adsorption of aromatic compounds, and that the CNTs with a smaller diameter and a larger specific surface area had a disordered carbon accumulation microstructure and many defects, where the adsorption of part of the HA would cover the defects on the CNTs’ surface. Density functional theory (DFT) calculations demonstrated that HA was more easily adsorbed on the CNTs without surface hydroxylation. This investigation is helpful in providing a theoretical basis for the scientific management of the production and application of CNTs, and the scientific assessment of their geochemical cycle and ecological risk.

Funder

Xiaoli Zhao

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3