Harmonic Generation in Biased Semiconductor Superlattices

Author:

Pereira Mauro Fernandes

Abstract

Semiconductor superlattices are proven nanomaterials for THz nonlinear optics by means of high order harmonic generation. Seminal approaches leading to a perfectly antisymmetric current-voltage (I–V.) curve predict the generation of odd harmonics only in the absence of a bias. However, even harmonics at high orders have been detected in several experiments. Their generation has been explained by considering deviations from the current flow symmetry that break the exact antisymmetry of the I–V. curve. In this paper, we focus on another issue found experimentally that has also not been explained, namely the harmonic power output asymmetry from negative to positive applied bias. Once more, breaking the I–V. flow symmetry explains the experiments and leads to a further tool to design the power output of these materials. Furthermore, a new approach for the Boltzmann Equation under relaxation-rate approximation eliminates numerical difficulties generated by a previous theory. This leads to very efficient analytical expressions that can be used for both fundamental physics/optics/material sciences and realistic device development and simulations.

Funder

European Union

Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3