Manipulating the Assembly of Au Nanoclusters for Luminescence Enhancement and Circularly Polarized Luminescence

Author:

Wang Chen,Feng Luyao,Liu Junxiao,Fu Jing,Shen Jinglin,Qi Wei

Abstract

Au nanocluster (AuNCs)-based luminescent functional materials have attracted the interest of researchers owing to their small size, tractable surface modification, phosphorescence lifetime and biocompatibility. However, the poor luminescence quantum yield (QY) of AuNCs limits their practical applications. Herein, we synthesized a type of AuNCs modified by 4,6-diamino-2-mercaptopyrimidine hydrate (DPT-AuNCs). Furthermore, organic acids, i.e., citric acid (CA) and tartaric acid (TA), were chosen for co-assembly with DPT-AuNCs to produce AuNCs-based luminescent materials with enhanced emission. Firstly, it was found that CA could significantly enhance the emission of DPT−AuNCs with the formation of red emission nanofibers (QY = 17.31%), which showed a potential for usage in I− detection. The n···π/π···π interaction between the CA and the DPT ligand was proposed as crucial for the emission. Moreover, chiral TA could not only improve the emission of DPT-AuNCs, but could also transfer its chirality to DPT-AuNCs and induce the formation of circularly polarized luminescence (CPL)-active nanofibers. It was demonstrated that the CPL signal could increase 4.6-fold in a ternary CA/TA/DPT-AuNCs co-assembly system. This work provides a convenient way to build AuNCs-based luminescent materials as probes, and opens a new avenue for building CPL-active materials by achiral NCs through a co-assembly strategy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3