Reactivity of Vanadium Nanoparticles with Oxygen and Tungsten

Author:

Morales Francisco MiguelORCID,Escanciano Marta,Yeste María Pilar,Santos Antonio Jesús

Abstract

A mechanistic study was carried out on the optimal methods of fabrication of products containing higher loads of thermochromic VO2(M1) fabricated by thermal treatments of V nanoparticles in air, that, once achieved, are more stable than other commercial products upon natural aging or reiterated reheating. At the best temperatures for single runs, 55% of VO2 can be attained by the reactions of a limited number of the species initially formed in a process, that, if not stopped, can degrade the product by solid state reactions of oxidations and reductions without O2 consumption. This fact supports the use of two-step treatments at lower temperatures and faster cooling rates that reach 65% of VO2; such reactions should, ideally, take place in the 550–625 °C temperature range. The impregnation of V with a tungstate salt is an ideal and simple doping platform that can decrease the energy of activation of the 2-cycle process, allowing higher yields and enthalpies of transformation (71% of VO2, 26 J/g) than undoped counterparts or trademarks. A good balance is reached for 1% at. of W, with a reduction in Tc of 20 °C not significantly resenting the enthalpy of the reversible metal-to-insulator transition. For higher W amounts, the appearance of tetragonal VO2, and W alloyed V3O7 and V2O5, decrease the fractions of increasingly and effectively doped M1-VO2 achieved till 2% of W, a concentration for which Tc attains the stimulating values of 35 °C on heating and 25 °C on cooling.

Funder

Spanish State R&D project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3