Integrated CuO/Pd Nanospike Hydrogen Sensor on Silicon Substrate

Author:

Lin Ru,Hu Qi,Liu Zuolian,Pan Shusheng,Chen Zhifeng,Zhang Wei,Liu Zhiyu,Zhang Shaolin,Zhang ChengyunORCID

Abstract

A large area of randomly distributed nanospike as nanostructured template was induced by femtosecond (fs) laser on a silicon substrate in water. Copper oxide (CuO) and palladium (Pd) heterostructured nanofilm were coated on the nanospikes by magnetron sputtering technology and vacuum thermal evaporation coating technology respectively for the construction of a p-type hydrogen sensor. Compared with the conventional gas sensor based on CuO working at high temperature, nanostructured CuO/Pd heterostructure exhibited promising detection capability to hydrogen at room temperature. The detection sensitivity to 1% H2 was 10.8%, the response time was 198 s, and the detection limit was as low as 40 ppm, presenting an important application prospect in the clean energy field. The excellent reusability and selectivity of the CuO/Pd heterostructure sensor toward H2 at room temperature were also demonstrated by a series of cyclic response characteristics. It is believed that our room-temperature hydrogen sensor fabricated with a waste-free green process, directly on silicon substrate, would greatly promote the future fabrication of a circuit-chip integrating hydrogen sensor.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3