Green Synthesis of Phosphorous-Containing Hydroxyapatite Nanoparticles (nHAP) as a Novel Nano-Fertilizer: Preliminary Assessment on Pomegranate (Punica granatum L.)

Author:

Abdelmigid Hala M.ORCID,Morsi Maissa M.,Hussien Nahed AhmedORCID,Alyamani Amal AhmedORCID,Alhuthal Nawal Abdallah,Albukhaty SalimORCID

Abstract

Nano-fertilizers are innovative materials created by nanotechnology methodologies that may potentially replace traditional fertilizers due to their rapid absorption and controlled distribution of nutrients in plants. In the current study, phosphorous-containing hydroxyapatite nanoparticles (nHAP) were synthesized as a novel phosphorus nano-fertilizer using an environmentally friendly green synthesis approach using pomegranate peel (PPE) and coffee ground (CE) extracts. nHAPs were physicochemically characterized and biologically evaluated utilizing the analysis of biochemical parameters such as photosynthetic activity, carbohydrate levels, metabolites, and biocompatibility changes in Punica granatum L. Cytocompatibility with mammalian cells was also investigated based on MTT assay on a Vero cell line. Dynamic light scattering (DLS) and zeta potential analysis were used to characterize the nHAPs for size and surface charge as well as morphology using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The nHAPs were found to have different shapes with average sizes of 229.6 nm, 120.6 nm (nHAPs_PPE) and 167.5 nm, 153 nm (nHAPs_CE) using DLS and TEM, respectively. Overall, the present results showed that the synthesized nHAPs had a negative impact on the selected biochemical, cytotoxic, and genotoxic parameters, indicating that the evaluation of nHAP synthesized by this approach has a wide range of applications, especially as a nano-fertilizer.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference87 articles.

1. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance;Gómez-Merino,2018

2. Emerging challenges-nanotechnology and the environment,2007

3. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture

4. Phosphorus deficiency in plants: Responses, adaptive mechanisms and signaling;Aziz,2013

5. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3