A Chromate-Free and Convenient Route to Fabricate Thin and Compact Conversion Coating for Corrosion Protection on LZ91 Magnesium Alloy

Author:

Chen Chun-Wei,Aktug Salim LeventORCID,Chang Chin-Jou,Lee Yueh-LienORCID,Ger Ming-DerORCID,Jian Shun-Yi

Abstract

This study characterizes and determines the corrosion resistance of Mn-Ce conversion coated LZ91 magnesium alloy that undergoes pretreatments. It is challenging to process large and curved workpieces in the industry because the geometric shapes are complex if they are mechanically ground. This study uses acid pickling instead of mechanical grinding, and a nitric acid solution is used for pickling. After pretreatments, the samples are immersed for 30 s in a conversion coating solution containing 0.1 M KMnO4 and 0.025 M Ce(NO3)3 with a pH of 1.5, as demonstrated in previous studies by the authors. The microstructure of the coating layer and electrochemical behavior of conversion coated samples exposed to 3.5 wt.% NaCl solution are studied. The corrosion behavior of Mn-Ce conversion coating specimens is determined using a salt spray test (SST). Scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) are used to analyze the interface between the coating layer and the underlying magnesium substrate and to investigate the microstructure of the specimens. The roughness of the coatings is measured using 3D white light interferometry. The results show that the deteriorated area ratio for conversion coated LZ91 decreases to less than 5% after 72 h of SST exposure, and the corrosion resistance is improved 2.25 times with the Mn-Ce conversion coating on LZ91 magnesium alloy.

Funder

Ministry of Science and Technology of Taiwan, Republic of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3