Abstract
It is well known that layered double hydroxides (LDHs) are two-dimensional (2D) layered compounds. However, we modified these 2D layered compounds to become one-dimensional (1D) nanostructures destined for high-performance supercapacitors applications. In this direction, silicon was inserted inside the nanolayers of Co-LDHs producing nanofibers of Si/Co LDHs through the intercalation of cyanate anions as pillars for building nanolayered structures. Additionally, nanoparticles were observed by controlling the preparation conditions and the silicon percentage. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermal analyses have been used to characterize the nanolayered structures of Si/Co LDHs. The electrochemical characterization was performed by cyclic voltammetry and galvanic charge–discharge technique in 2M KOH electrolyte solution using three-electrode cell system. The calculated specific capacitance results indicated that the change of morphology from nanoparticles or plates to nanofibers had a positive effect for improving the performance of specific capacitance of Si/Co LDHs. The specific capacitance enhanced to be 621.5 F g−1 in the case of the nanofiber of Si/Co LDHs. Similarly, the excellent cyclic stability (84.5%) was observed for the nanofiber. These results were explained through the attribute of the nanofibrous morphology and synergistic effects between the electric double layer capacitive character of the silicon and the pseudo capacitance nature of the cobalt. The high capacitance of ternary Si/Co/cyanate LDHs nanocomposites was suggested to be used as active electrode materials for high-performance supercapacitors applications.
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献