Abstract
Vanadium oxide (VO2) is considered a Peierls–Mott insulator with a metal–insulator transition (MIT) at Tc = 68° C. The tuning of MIT parameters is a crucial point to use VO2 within thermoelectric, electrochromic, or thermochromic applications. In this study, the effect of oxygen deficiencies, strain engineering, and metal tungsten doping are combined to tune the MIT with a low phase transition of 20 °C in the air without capsulation. Narrow hysteresis phase transition devices based on multilayer VO2, WO3, Mo0.2W0.8O3, and/or MoO3 oxide thin films deposited through a high vacuum sputtering are investigated. The deposited films are structurally, chemically, electrically, and optically characterized. Different conductivity behaviour was observed, with the highest value towards VO1.75/WO2.94 and the lowest VO1.75 on FTO glass. VO1.75/WO2.94 showed a narrow hysteresis curve with a single-phase transition. Thanks to the role of oxygen vacancies, the MIT temperature decreased to 35 °C, while the lowest value (Tc = 20 °C) was reached with Mo0.2W0.8O3/VO2/MoO3 structure. In this former sample, Mo0.2W0.8O3 was used for the first time as an anti-reflective and anti-oxidative layer. The results showed that the MoO3 bottom layer is more suitable than WO3 to enhance the electrical properties of VO2 thin films. This work is applied to fast phase transition devices.
Funder
the Scientific Research Projects Coordination of Necmettin Erbakan University
Subject
General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献