Formulation of Chlorine-Dioxide-Releasing Nanofibers for Disinfection in Humid and CO2-Rich Environment

Author:

Palcsó BarnabásORCID,Kazsoki Adrienn,Herczegh Anna,Ghidán Ágoston,Pinke Balázs,Mészáros LászlóORCID,Zelkó RománaORCID

Abstract

Background: Preventing infectious diseases has become particularly relevant in the past few years. Therefore, antiseptics that are harmless and insusceptible to microbial resistance mechanisms are desired in medicine and public health. In our recent work, a poly(ethylene oxide)-based nanofibrous mat loaded with sodium chlorite was formulated. Methods: We tested the chlorine dioxide production and bacterial inactivation of the fibers in a medium, modeling the parameters of human exhaled air (ca. 5% (v/v) CO2, T = 37 °C, RH > 95%). The morphology and microstructure of the fibers were investigated via scanning electron microscopy and infrared spectroscopy. Results: Smooth-surfaced, nanoscale fibers were produced. The ClO2-producing ability of the fibers decreased from 65.8 ppm/mg to 4.8 ppm/mg with the increase of the sample weight from 1 to 30 mg. The effect of CO2 concentration and exposure time was also evaluated. The antibacterial activity of the fibers was tested in a 24 h experiment. The sodium-chlorite-loaded fibers showed substantial antibacterial activity. Conclusions: Chlorine dioxide was liberated into the gas phase in the presence of CO2 and water vapor, eliminating the bacteria. Sodium-chlorite-loaded nanofibers can be sources of prolonged chlorine dioxide production and subsequent pathogen inactivation in a CO2-rich and humid environment. Based on the results, further evaluation of the possible application of the formulation in face-mask filters as medical devices is encouraged.

Funder

Ministry of Innovation and Technology, Hungary

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3