Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach

Author:

Capitão AnaORCID,Santos JoanaORCID,Barreto AngelaORCID,Amorim Mónica J. B.ORCID,Maria Vera L.ORCID

Abstract

The increased use and production of new materials has contributed to Anthropocene biodiversity decrease. Therefore, a careful and effective toxicity evaluation of these new materials is crucial. However, environmental risk assessment is facing new challenges due to the specific characteristics of nanomaterials (NMs). Most of the available ecotoxicity studies target the aquatic ecosystems and single exposures of NMs. The present study evaluated Enchytraeus crypticus survival and reproduction (28 days) and biochemical responses (14 days) when exposed to nanoparticles of vanadium (VNPs) and boron (BNPs) (single and mixture; tested concentrations: 10 and 50 mg/kg). Although at the organism level the combined exposures (VNPs + BNPs) did not induce a different toxicity from the single exposures, the biochemical analysis revealed a more complex picture. VNPs presented a higher toxicity than BNPs. VNPs (50 mg/kg), independently of the presence of BNPs (additive or independent effects), caused a decrease in survival and reproduction. However, acetylcholinesterase, glutathione S-transferase, catalase, glutathione reductase activities, and lipid peroxidation levels revealed alterations in neurotoxicity, detoxification and antioxidant responses, depending on the time and type of exposure (single or mixture). The results from this study highlight different responses of the organisms to contaminants in single versus mixture exposures, mainly at the biochemical level.

Funder

FCT/MCTES for the financial support to CESAM, through national funds.

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3