Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies

Author:

Bessudova Anna,Bukin Yurij,Likhoshway YelenaORCID

Abstract

Silica-scaled chrysophytes have an ancient origin; nowadays they inhabit many northern water bodies. As the territories above the 60th parallel north were under the influence of glaciers during the Late Pleistocene, the local water bodies and their microalgal populations formed mainly during the Early Holocene. Now, the arctic, sub-arctic and temperate zones are located here and the water bodies in these regions have varying environmental characteristics. We analyzed the dispersal of silica-scaled chrysophytes in 193 water bodies in 21 northern regions, and for 135 of them determined the role of diverse environmental factors in their species composition and richness using statistical methods. Although the species composition and richness certainly depend on water body location, water temperature and conductivity, regions and individual water bodies with similar species composition can be significantly distant in latitudinal direction. Eighteen species and one variety from 165 taxa occurring here have clear affinities to fossil congeners; they have been encountered in all regions studied and amount to 6–54% of the total number of silica-scaled chrysophytes. We also compared the distribution of the species with a reconstruction of glacier-dammed lakes in the Northern Hemisphere in the Late Pleistocene–Early Holocene. The dispersal of silica-scaled chrysophytes in the northern water bodies could take place in the Late Pleistocene–Early Holocene over the circumpolar freshwater network of glacier-dammed lakes, the final Protista composition being subject to the environmental parameters of each individual water body and the region where the water body is located. This species dispersal scenario can also be valid for other microscopic aquatic organisms as well as for southerly water bodies of the Northern Hemisphere.

Funder

State Assignments of Limnological Institute Siberian Branch of Russian Academy of Sciences

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3