Investigation of an Effective Anchoring Length of CFRP Tapes Used to Strengthen Steel Thin-Walled Beams with a Rectangular Cross-Section Subjected to Four-Point Bending

Author:

Szewczak Ilona1,Snela Malgorzata1ORCID,Rozylo Patryk2ORCID

Affiliation:

1. Faculty of Civil Engineering, Lublin University of Technology, 40 Nadbystrzycka Str., 20-618 Lublin, Poland

2. Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland

Abstract

In order to design an optimal reinforcement of steel thin-walled beams with composite materials, it is worth analyzing two important, although often overlooked issues, which are the selection of the appropriate thickness of the adhesive layer and the effective anchoring length of the composite tape. This paper, which is part of a wider laboratory study devoted to the strengthening of thin-walled steel profiles, focuses on the second issue. The paper involves a description of laboratory four-point bending tests during which ten thin-walled steel beams made of a rectangular section with dimensions of 120 × 60 × 3 and a length of 3 m were tested. Two beams were taken as reference beams, and the other eight were reinforced using Sika CarboDur S512 carbon fiber composite tape, assuming four different effective anchorage lengths. The impact of the length of the anchoring of the composite tape on the value of the displacements and strains of the tested beams and on the value of the destructive load that caused tape detachment was analyzed. The following phase was numerical analyses carried out in the Abaqus program, which showed high consistency with the results of laboratory tests. In reference to the conducted tests, it was observed that the increase in the anchoring length of the composite tape has a slight impact on the change in the value of strains and displacements in the tested beams. Nevertheless, the increase in the effective anchorage length has a significant impact on the load value at which the composite tapes are detached from the surface of the steel thin-walled beam.

Funder

Lublin University of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3