Dielectric Properties and Switching Processes of Barium Titanate–Barium Zirconate Ferroelectric Superlattices

Author:

Sidorkin Alexander,Nesterenko Lolita,Gagou YaoviORCID,Saint-Gregoire Pierre,Vorotnikov Eugeniy,Popravko Nadezhda

Abstract

This article is devoted to the investigation of the dielectric and repolarization properties of barium zirconate and barium titanate BaZrO3/BaTiO3 superlattices with a period of 13.322 nm on a monocrystal magnesium oxide (MgO) substrate. Synthesized superlattices demonstrated a ferroelectric phase transition at a temperature of approximately 393 °C, which is far higher than the Curie temperature of BaTiO3 thin films and bulk samples. The dielectric permittivity of the superlattice reached more than 104 at maximum. As the electric field frequency increased, the dielectric constant of the studied superlattice decreased over the entire study temperature range, but position of the maximum dielectric constant remained the same with changing frequency. The temperature dependence of the inverse dielectric permittivity 1/ε(T) for the studied samples shows that, in the investigated superlattice, both Curie–Weiss law and the law of “two” were followed. Additionally, the ε(T) dependences showed practically no temperature hysteresis with heating and cooling. Samples of synthesized superlattices had a relatively small internal bias field, which was directed from the superlattice towards the substrate.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3