Abstract
A series of silicon-doped lithium manganese oxides were obtained via a sol-gel process. XRD characterization results indicate that the silicon-doped samples retain the spinel structure of LiMn2O4. Electrochemical tests show that introducing silicon ions into the spinel structure can have a great effect on reversible capacity and cycling stability. When cycled at 0.5 C, the optimal Si-doped LiMn2O4 can exhibit a pretty high initial capacity of 140.8 mAh g−1 with excellent retention of 91.1% after 100 cycles, which is higher than that of the LiMn2O4, LiMn1.975Si0.025O4, and LiMn1.925Si0.075O4 samples. Moreover, the optimal Si-doped LiMn2O4 can exhibit 88.3 mAh g−1 with satisfactory cycling performance at 10 C. These satisfactory results are mainly contributed by the more regular and increased MnO6 octahedra and even size distribution in the silicon-doped samples obtained by sol-gel technology.
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献