Mechanical Properties of Hybrid Ultra-High Performance Engineered Cementitous Composites Incorporating Steel and Polyethylene Fibers

Author:

Zhou Yingwu,Xi Bin,Yu Kequan,Sui Lili,Xing Feng

Abstract

This paper presents the authors’ newly developed hybrid ultra-high performance (HUHP) engineered cementitious composite (ECC) with steel (ST) and polyethylene (PE) fibers. From this point on it will be referred to as HUHP-ECC. The volumes of steel and PE fibers were adjusted to obtain different mechanical properties, including compressive strength, tensile, and flexural properties. We found that tensile and flexural properties, including bending strength and ductility indexes, increased with higher PE fiber amounts but reduced with the increased ST fiber volume. Notably, the compressive strength had the opposite tendency and decreased with increases in the PE volume. The ST fiber had a significantly positive effect on the compressive strength. The fluidity of HUHP-ECC improved with the increasing amount of ST fiber. The pseudo strain-hardening (PSH) values for all the HUHP-ECC mixtures were used to create an index indicating the ability of strain capacity; thus, the PSH values were calculated to explain the ductility of HUHP-ECC with different fiber volumes. Finally, the morphology of PE and ST fibers at the fracture surface was observed by an environmental scanning electron microscope (ESEM).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3