Abstract
In the present work a dynamic simulation model for a quadcopter drone is developed and validated through experimental flight data. The aerodynamics of the rotors is modeled with the blade element theory combined with the Peters and He dynamic wake model, using an appropriate number of states. The aerodynamic forces and moments thus calculated feed the dynamic equations of a drone and an aeroacoustics model, to obtain an estimate of the noise generated during the flight. Loading and thickness noise are calculated as a time domain solution of the wave equation (Farassat 1A formulation), with mobile sources in stagnant flow. The results of numerical simulations are compared with experimental data recorded during flights performed at the Aerospace Italian Research Center (CIRA), both for the flight dynamics and the aeroacoustics models. To customize the model to the drone used, a laser scanner is used to obtain the geometric characteristics of the blades and the XFOIL program is used to calculate the blade profile aerodynamic coefficients.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献