Deep Learning-Based Energy Optimization for Edge Device in UAV-Aided Communications

Author:

Chen ChengbinORCID,Xiang Jin,Ye Zhuoya,Yan Wanyi,Wang Suiling,Wang Zhensheng,Chen Pingping,Xiao Min

Abstract

Edge devices (EDs) carry limited energy, but 6th generation mobile networks (6G) communication will consume more energy. The unmanned aerial vehicle (UAV)-aided wireless communication network can provide communication links to EDs without a signal. However, with the time-lag system, the EDs cannot dynamically adjust the emission energy because the dynamic UAV coordinates cannot be accurately acquired. In addition, the fixed emission energy makes the EDs have poor endurance. To address this challenge, in this paper, we propose a deep learning-based energy optimization algorithm (DEO) to dynamically adjust the emission energy of the ED so that the received energy of the mobile relay UAV is, as much as possible, equal to the sensitivity of the receiver. Specifically, the edge server provides the computing platform and uses deep learning (DL) to predict the location information of the relay UAV in dynamic scenarios. Then, the ED emission energy is adjusted according to the predicted position. It enables the ED to communicate reliably with the mobile relay UAV at minimum energy. We analyze the performance of a variety of predictive networks under different time-delay systems through experiments. The results show that the Weighted Mean Absolute Percentage Error (WMAPE) of this algorithm is 0.54%, 0.80% and 1.15% under the effect of a communication delay of 0.4 s, 0.6 s and 0.8 s, respectively.

Funder

National Natural Science Foundation of China

NSFC of Fujian Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3