VSAI: A Multi-View Dataset for Vehicle Detection in Complex Scenarios Using Aerial Images

Author:

Wang Jinghao,Teng Xichao,Li Zhang,Yu Qifeng,Bian Yijie,Wei Jiaqi

Abstract

Arbitrary-oriented vehicle detection via aerial imagery is essential in remote sensing and computer vision, with various applications in traffic management, disaster monitoring, smart cities, etc. In the last decade, we have seen notable progress in object detection in natural imagery; however, such development has been sluggish for airborne imagery, not only due to large-scale variations and various spins/appearances of instances but also due to the scarcity of the high-quality aerial datasets, which could reflect the complexities and challenges of real-world scenarios. To address this and to improve object detection research in remote sensing, we collected high-resolution images using different drone platforms spanning a large geographic area and introduced a multi-view dataset for vehicle detection in complex scenarios using aerial images (VSAI), featuring arbitrary-oriented views in aerial imagery, consisting of different types of complex real-world scenes. The imagery in our dataset was captured with a wide variety of camera angles, flight heights, times, weather conditions, and illuminations. VSAI contained 49,712 vehicle instances annotated with oriented bounding boxes and arbitrary quadrilateral bounding boxes (47,519 small vehicles and 2193 large vehicles); we also annotated the occlusion rate of the objects to further increase the generalization abilities of object detection networks. We conducted experiments to verify several state-of-the-art algorithms in vehicle detection on VSAI to form a baseline. As per our results, the VSAI dataset largely shows the complexity of the real world and poses significant challenges to existing object detection algorithms. The dataset is publicly available.

Funder

National Natural Science Funding of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference49 articles.

1. The Pascal Visual Object Classes (VOC) Challenge

2. ImageNet Large Scale Visual Recognition Challenge

3. Microsoft coco: Common objects in context;Lin;Proceedings of the European Conference on Computer Vision,2014

4. Rotation-invariant object detection in remote sensing images based on radial-gradient angle;Lin;IEEE Geosci. Remote Sens. Lett.,2014

5. Ship Rotated Bounding Box Space for Ship Extraction From High-Resolution Optical Satellite Images With Complex Backgrounds

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3