Persistent Charging System for Crazyflie Platform

Author:

Nguyen Ngoc PhiORCID,Lee Bo HyeORCID,Xuan-Mung NguyenORCID,Ha Le Nhu Ngoc ThanhORCID,Jeong Han Sol,Lee Seok TaeORCID,Hong Sung Kyung

Abstract

Nowadays, quadcopters are used widely in different applications, but their flight time is limited during operation. In this paper, a precision landing method based on a Kalman filter is proposed for an autonomous indoor persistent drone system that aims to increase the flight time of quadcopters. First, a local positioning system is used for tracking performance. Second, instead of using this local positioning system during the landing phase, a multi-ranger sensor is proposed to increase the accuracy of horizontal errors. Next, based on the relative position provided by the multi-ranger sensor, a Kalman filter technique is applied to estimate the relative velocity of the system, which is then applied to control the position of the quadcopter during the landing phase. Finally, a charging state machine law is proposed to charge the battery of three quadcopters sequentially. The experimental results demonstrate that the proposed concept based on a multi-ranger sensor can enhance the accuracy of the landing phase in comparison with the conventional method.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3