UAV and Structure-From-Motion Photogrammetry Enhance River Restoration Monitoring: A Dam Removal Study

Author:

Evans Alexandra D.,Gardner Kevin H.ORCID,Greenwood Scott,Still Brett

Abstract

Dam removal is a river restoration technique that has complex landscape-level ecological impacts. Unmanned aerial vehicles (UAVs) are emerging as tools that enable relatively affordable, repeatable, and objective ecological assessment approaches that provide a holistic perspective of restoration impacts and can inform future restoration efforts. In this work, we use a consumer-grade UAV, structure-from-motion (SfM) photogrammetry, and machine learning (ML) to evaluate geomorphic and vegetation changes pre-/post-dam removal, and discuss how the technology enhanced our monitoring of the restoration project. We compared UAV evaluation methods to conventional boots-on-ground methods throughout the Bellamy River Reservoir (Dover, NH, USA) pre-/post-dam removal. We used a UAV-based vegetation classification approach that used a support vector machine algorithm and a featureset composed of SfM-derived elevation and visible vegetation index values to map other, herbaceous, shrub, and tree cover throughout the reservoir (overall accuracies from 83% to 100%), mapping vegetation succession as well as colonization of exposed sediments that occurred post-dam removal. We used SfM-derived topography and the vegetation classifications to map erosion and deposition throughout the reservoir, despite its heavily vegetated condition, and estimate volume changes post-removal. Despite some limitations, such as influences of refraction and vegetation on the SfM topography models, UAV provided information on post-dam removal changes that would have gone unacknowledged by the conventional ecological assessment approaches, demonstrating how UAV technology can provide perspective in restoration evaluation even in less-than-ideal site conditions for SfM. For example, the UAV provided perspective of the magnitude and extent of channel shape changes throughout the reservoir while the boots-on-ground topographic transects were not as reliable for detecting change due to difficulties in navigating the terrain. In addition, UAV provided information on vegetation changes throughout the reservoir that would have been missed by conventional vegetation plots due to their limited spatial coverage. Lastly, the COVID-19 pandemic prevented us from meeting to collect post-dam removal vegetation plot data. UAV enabled data collection that we would have foregone if we relied solely on conventional methods, demonstrating the importance of flexible and adaptive methods for successful restoration monitoring such as those enabled via UAV.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3