Drones for Area-Wide Larval Source Management of Malaria Mosquitoes

Author:

Mukabana Wolfgang,Welter Guido,Ohr Pius,Tingitana Leka,Makame Makame,Ali Abdullah,Knols Bart

Abstract

Given the stagnating progress in the fight against malaria, there is an urgent need for area-wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e., insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using drones for aerial application of Aquatain Mosquito Formulation (AMF), a monomolecular surface film with larvicidal activity, against the African malaria mosquito Anopheles arabiensis in an irrigated rice agro-ecosystem in Unguja island, Zanzibar, Tanzania. Nine rice paddies were randomly assigned to three treatments: (a) control (drone spraying with water only), (b) drone spraying with 1 mL/m2, or (c) drone spraying with 5 mL/m2 of AMF. Compared to control paddies, AMF treatments resulted in highly significant (p < 0.001) reductions in the number of larvae and pupae and >90% fewer emerging adults. The residual effect of AMF treatment lasted for a minimum of 5 weeks post-treatment, with reductions in larval densities reaching 94.7% in week 5 and 99.4% in week 4 for the 1 and 5 mL/m2 AMF treatments, respectively. These results merit a review of the WHO policy regarding larval source management (LSM), which primarily recommends its use in urban environments with ‘few, fixed, and findable’ breeding sites. Unmanned aerial vehicles (UAVs) can rapidly treat many permanent, temporary, or transient mosquito breeding sites over large areas at low cost, thereby significantly enhancing the role of LSM in contemporary malaria control and elimination efforts.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3