Drone Observations of Marine Life and Human–Wildlife Interactions off Sydney, Australia

Author:

Pirotta VanessaORCID,Hocking David P.,Iggleden Jason,Harcourt RobertORCID

Abstract

Drones have become popular with the general public for viewing and filming marine life. One amateur enthusiast platform, DroneSharkApp, films marine life in the waters off Sydney, Australia year-round and posts their observations on social media. The drone observations include the behaviours of a variety of coastal marine wildlife species, including sharks, rays, fur seals, dolphins and fish, as well as migratory species such as migrating humpback whales. Given the extensive effort and multiple recordings of the presence, behaviour and interactions of various species with humans provided by DroneSharkApp, we explored its utility for providing biologically meaningful observations of marine wildlife. Using social media posts from the DroneSharkApp Instagram page, a total of 678 wildlife videos were assessed from 432 days of observation collected by a single observer. This included 94 feeding behaviours or events for fur seals (n = 58) and dolphins (n = 33), two feeding events for white sharks and one feeding event for a humpback whale. DroneSharkApp documented 101 interactions with sharks and humans (swimmers and surfers), demonstrating the frequent, mainly innocuous human–shark overlap off some of Australia’s busiest beaches. Finally, DroneSharkApp provided multiple observations of humpback and dwarf minke whales with calves travelling north, indicating calving occurring well south of traditional northern Queensland breeding waters. Collaboration between scientists and citizen scientists such as those involved with DroneSharkApp can greatly and quantitatively increase the biological understanding of marine wildlife data.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3