Investigation of Rotor Efficiency with Varying Rotor Pitch Angle for a Coaxial Drone

Author:

Giljarhus Knut Erik TeigenORCID,Porcarelli AlessandroORCID,Apeland JørgenORCID

Abstract

Coaxial rotor systems are appealing for multirotor drones, as they increase thrust without increasing the vehicle’s footprint. However, the thrust of a coaxial rotor system is reduced compared to having the rotors in line. It is of interest to increase the efficiency of coaxial systems, both to extend mission time and to enable new mission capabilities. While some parameters of a coaxial system have been explored, such as the rotor-to-rotor distance, the influence of rotor pitch is less understood. This work investigates how adjusting the pitch of the lower rotor relative to that of the upper one impacts the overall efficiency of the system. A methodology based on blade element momentum theory is extended to coaxial rotor systems, and in addition blade-resolved simulations using computational fluid dynamics are performed. A coaxial rotor system for a medium-sized drone with a rotor diameter of 71.12 cm is used for the study. Experiments are performed using a thrust stand to validate the methods. The results show that there exists a peak in total rotor efficiency (thrust-to-power ratio), and that the efficiency can be increased by 2% to 5% by increasing the pitch of the lower rotor. The work contributes to furthering our understanding of coaxial rotor systems, and the results can potentially lead to more efficient drones with increased mission time.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3