Abstract
Monitoring intertidal habitats, such as oyster reefs, salt marshes, and mudflats, is logistically challenging and often cost- and time-intensive. Remote sensing platforms, such as unoccupied aircraft systems (UASs), present an alternative to traditional approaches that can quickly and inexpensively monitor coastal areas. Despite the advantages offered by remote sensing systems, challenges remain concerning the best practices to collect imagery to study these ecosystems. One such challenge is the range of spatial resolutions for imagery that is best suited for intertidal habitat monitoring. Very fine imagery requires more collection and processing times. However, coarser imagery may not capture the fine-scale patterns necessary to understand relevant ecological processes. This study took UAS imagery captured along the Gulf of Mexico coastline in Florida, USA, and resampled the derived orthomosaic and digital surface model to resolutions ranging from 3 to 31 cm, which correspond to the spatial resolutions achievable by other means (e.g., aerial photography and certain commercial satellites). A geographic object-based image analysis (GEOBIA) workflow was then applied to datasets at each resolution to classify mudflats, salt marshes, oyster reefs, and water. The GEOBIA process was conducted within R, making the workflow open-source. Classification accuracies were largely consistent across the resolutions, with overall accuracies ranging from 78% to 82%. The results indicate that for habitat mapping applications, very fine resolutions may not provide information that increases the discriminative power of the classification algorithm. Multiscale classifications were also conducted and produced higher accuracies than single-scale workflows, as well as a measure of uncertainty between classifications.
Funder
United States Department of Agriculture
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献