Design and Implementation of a UUV Tracking Algorithm for a USV

Author:

Kang Jong-Gu,Kim TaeyunORCID,Kwon Laeun,Kim Hyeong-Dong,Park Jong-Sang

Abstract

In a departure from the past, unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs) are increasingly needed for complementary cooperation in military, scientific, and commercial applications, because this is more efficient than standalone operations. Information sharing through acoustic underwater communication is vital for complementary cooperation between USVs and UUVs. Normally, since USVs have advantages in terms of wide operational boundaries compared to UUVs, they are efficient for tracking UUVs. In this paper, we suggest a UUV tracking algorithm for a USV. The tracking algorithm’s development consists of three main software models: an estimation based on an extended Kalman filter (EKF) with a navigation smoothing method, guidance based on multimode guidance, and re-searching based on a pattern. In addition, the algorithm provides a procedure for tracking UUVs in complex acoustic underwater communication environments. The tracking algorithm was tested in a simulated environment to check the performance of each method, and implemented with a USV system to verify its validity and stability in sea trials. The UUV tracking algorithm of the USV shows stable and efficient performance.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference31 articles.

1. Unmanned Underwater Vehicle (UUV) Information Study;Allard,2014

2. Optimal Navigation of an Unmanned Surface Vehicle and an Autonomous Underwater Vehicle Collaborating for Reliable Acoustic Communication with Collision Avoidance

3. NIX USV platform for precision track and trail of UUV platforms;Martinez;Ocean Sens. Monit. XII,2020

4. Double-Scale Adaptive Transmission in Time-Varying Channel for Underwater Acoustic Sensor Networks

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3