Pasture Productivity Assessment under Mob Grazing and Fertility Management Using Satellite and UAS Imagery

Author:

Sangjan Worasit,Carpenter-Boggs Lynne A.,Hudson Tipton D.,Sankaran Sindhuja

Abstract

Pasture management approaches can determine the productivity, sustainability, and ecological balance of livestock production. Sensing techniques potentially provide methods to assess the performance of different grazing practices that are more labor and time efficient than traditional methods (e.g., soil and crop sampling). This study utilized high-resolution satellite and unmanned aerial system (UAS) imagery to evaluate vegetation characteristics of a pasture field location with two grazing densities (low and high, applied in the years 2015–2019) and four fertility treatments (control, manure, mineral, and compost tea, applied annually in the years 2015–2019). The pasture productivity was assessed through satellite imagery annually from the years 2017 to 2019. The relation and variation within and between the years were evaluated using vegetation indices extracted from satellite and UAS imagery. The data from the two sensing systems (satellite and UAS) demonstrated that grazing density showed a significant effect (p < 0.05) on pasture crop status in 2019. Furthermore, the mean vegetation index data extracted from satellite and UAS imagery (2019) had a high correlation (r ≥ 0.78, p < 0.001). These results show the potential of utilizing satellite and UAS imagery for crop productivity assessment applications in small to medium pasture research and management.

Funder

Washington State University

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3