Design and Implementation of UAVs for Bird’s Nest Inspection on Transmission Lines Based on Deep Learning

Author:

Li Han,Dong Yiqun,Liu Yunxiao,Ai Jianliang

Abstract

In recent years, unmanned aerial vehicles (UAV) have been increasingly used in power line inspections. Birds often nest on transmission line towers, which threatens safe power line operation. The existing research on bird’s nest inspection using UAVs mainly stays at the level of image postprocessing detection, which has poor real-time performance and cannot obtain timely bird’s nest detection results. Considering the above shortcomings, we designed a power inspection UAV system based on deep learning technology for autonomous flight, positioning and photography, real-time bird nest detection, and result export. In this research, 2000 bird’s nest images in the actual power inspection environment were shot and collected to create the dataset. The parameter optimization and test comparison for bird’s nest detection are based on the three target detection models of YOLOv3, YOLOv5-s, and YOLOX-s. A YOLOv5-s bird’s nest detection model optimized for bird’s nest real-time detection is proposed, and it is deployed to the onboard computer for real-time detection and verification during flight. The DJI M300 RTK UAV was used to conduct a test flight in a natural power inspection environment. The test results show that the mAP of the UAV system designed in this paper for bird’s nest detection is 92.1%, and the real-time detection frame rate is 33.9 FPS. Compared with the previous research results, this paper proposes a new practice of using drones for bird’s nest detection, dramatically improving the real-time accuracy of bird’s nest detection. The UAV system can efficiently complete the task of bird’s nest detection in the process of electric power inspection, which can significantly reduce manpower consumption in the power inspection process.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference36 articles.

1. Detection of bird nests on power line patrol using single shot detector;Hao;Proceedings of the 2019 Chinese Automation Congress (CAC),2019

2. A novel autonomous navigation approach for UAV power line inspection;Hui;Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO),2017

3. Automatic Clearance Anomaly Detection for Transmission Line Corridors Utilizing UAV-Borne LIDAR Data

4. Deep-learning-based autonomous navigation approach for UAV transmission line inspection;Hui;Proceedings of the 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI),2018

5. An Automatic Detection Method of Bird’s Nest on Transmission Line Tower Based on Faster_RCNN

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3