LAP-BFT: Lightweight Asynchronous Provable Byzantine Fault-Tolerant Consensus Mechanism for UAV Network

Author:

Kong LingjunORCID,Chen BingORCID,Hu Feng

Abstract

Mission-oriented UAV networks operate in nonsecure, complex environments with time-varying network partitioning and node trustworthiness. UAV networks are thus essentially asynchronous distributed systems with the Byzantine General problem, whose availability depends on the tolerance of progressively more erroneous nodes in the course of a mission. To address the resource-limited nature of UAV networks, this paper proposes a lightweight asynchronous provable Byzantine fault-tolerant consensus method. The consensus method reduces the communication overhead by splitting the set of local trusted state transactions and then dispersing the reliable broadcast control transmission (DRBC), introduces vector commitments to achieve multivalue Byzantine consensus (PMVBA) for identity and data in a provable manner and reduces the computational complexity, and the data stored on the chain is only the consensus result (global trustworthiness information of the drone nodes), avoiding the blockchain’s “storage inflation” problem. This makes the consensus process lighter in terms of bandwidth, computation and storage, ensuring the longevity and overall performance of the UAV network during the mission. Through QualNet simulation platform, existing practical asynchronous consensus algorithms are compared, and the proposed method performs better in terms of throughput, consensus latency and energy consumption rate.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Reputation Systems for UAV Networks;Drones;2024-06-08

2. Blockchain-based Reconfiguration Management For Smart City Architecture;2024 9th International Conference on Integrated Circuits, Design, and Verification (ICDV);2024-06-06

3. A Lightweight Reputation System for UAV Networks;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Lightweight blockchain solutions: Taxonomy, research progress, and comprehensive review;Internet of Things;2023-12

5. ePoW Energy-Efficient Blockchain Consensus Algorithm for Decentralize Federated Learning System in Resource-Constrained UAV Swarm;Communications in Computer and Information Science;2023-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3