Abstract
A micro needle trap sampler (NTS) was carried by a mini quadrotor drone (Mavic Pro, DJI) to collect volatile organic compounds (VOCs) from industries. The NTS was fabricated using a 7 cm long, 22-gauge stainless steel needle by packing powdered divinylbenzene (DVB) adsorbents (60–80 mesh diameters). The telescoping sampling shaft was installed on the drone to extend the NTS beyond the downward air turbulence that was caused by the rotation of its propellers. The total mass of the sampling device, including an NTS, a telescoping shaft, a mini-air pump, and an ABS (acrylonitrile butadiene styrene) rack, was not more than 200 g. The emitted VOCs, those from a steel processing plant, including aromatic hydrocarbons (toluene of 15 ppb, ethylbenzene of 9 ppb and p-xylene 12 ppb), and those from a semiconductor processing factory, including trace amounts of methanol (1.96–2.00 ppm), acetone (0.05–0.10 ppm), and toluene (1.04–2.00 ppm), were extracted by the NTS on the drone and identified using a gas chromatography-mass spectroscopy (GC-MS) system in the laboratory. According to the results of VOC detection during the sampling flight of a drone, the stationary pollution sources were successfully identified.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献