Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology

Author:

Zhou Jun,Lu XiangyuORCID,Yang RuiORCID,Chen Huizhe,Wang Yaliang,Zhang Yuping,Huang Jing,Liu FeiORCID

Abstract

Efficient and quick yield prediction is of great significance for ensuring world food security and crop breeding research. The rapid development of unmanned aerial vehicle (UAV) technology makes it more timely and accurate to monitor crops by remote sensing. The objective of this study was to explore the method of developing a novel yield index (YI) with wide adaptability for yield prediction by fusing vegetation indices (VIs), color indices (CIs), and texture indices (TIs) from UAV-based imagery. Six field experiments with 24 varieties of rice and 21 fertilization methods were carried out in three experimental stations in 2019 and 2020. The multispectral and RGB images of the rice canopy collected by the UAV platform were used to rebuild six new VIs and TIs. The performance of VI-based YI (MAPE = 13.98%) developed by quadratic nonlinear regression at the maturity stage was better than other stages, and outperformed that of CI-based (MAPE = 22.21%) and TI-based (MAPE = 18.60%). Then six VIs, six CIs, and six TIs were fused to build YI by multiple linear regression and random forest models. Compared with heading stage (R2 = 0.78, MAPE = 9.72%) and all stage (R2 = 0.59, MAPE = 22.21%), the best performance of YI was developed by random forest with fusing VIs + CIs + TIs at maturity stage (R2 = 0.84, MAPE = 7.86%). Our findings suggest that the novel YI proposed in this study has great potential in crop yield monitoring.

Funder

Science and Technology Department of Zhejiang Province

Collaborative Extension Program of Major Agricultural Technologies of Zhejiang Province of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3