A New Visual Inertial Simultaneous Localization and Mapping (SLAM) Algorithm Based on Point and Line Features

Author:

Zhang Tong,Liu ChunjiangORCID,Li Jiaqi,Pang Minghui,Wang Mingang

Abstract

In view of traditional point-line feature visual inertial simultaneous localization and mapping (SLAM) system, which has weak performance in accuracy so that it cannot be processed in real time under the condition of weak indoor texture and light and shade change, this paper proposes an inertial SLAM method based on point-line vision for indoor weak texture and illumination. Firstly, based on Bilateral Filtering, we apply the Speeded Up Robust Features (SURF) point feature extraction and Fast Nearest neighbor (FLANN) algorithms to improve the robustness of point feature extraction result. Secondly, we establish a minimum density threshold and length suppression parameter selection strategy of line feature, and take the geometric constraint line feature matching into consideration to improve the efficiency of processing line feature. And the parameters and biases of visual inertia are initialized based on maximum posterior estimation method. Finally, the simulation experiments are compared with the traditional tightly-coupled monocular visual–inertial odometry using point and line features (PL-VIO) algorithm. The simulation results demonstrate that the proposed an inertial SLAM method based on point-line vision for indoor weak texture and illumination can be effectively operated in real time, and its positioning accuracy is 22% higher on average and 40% higher in the scenario that illumination changes and blurred image.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3