Autonomous Surveying of Plantation Forests Using Multi-Rotor UAVs

Author:

Lin Tzu-JuiORCID,Stol Karl A.ORCID

Abstract

Modern plantation forest procedures still rely heavily on manual data acquisition in the inventory process, limiting the quantity and quality of the collected data. This limitation in collection performance is often due to the difficulty of traversing the plantation forest environment on foot. This work presents an autonomous system for exploring plantation forest environments using multi-rotor UAVs. The proposed method consists of three parts: waypoint selection, trajectory generation, and trajectory following. Waypoint selection is accomplished by estimating the rows’ locations within the environment and selecting points between adjacent rows. Trajectory generation is completed using a non-linear optimization-based constant speed planner and the following is accomplished using a model predictive control approach. The proposed method is tested extensively in simulation against various procedurally generated forest environments, with results suggesting that it is robust against variations within the scene. Finally, flight testing is performed in a local plantation forest, demonstrating the successful application of our proposed method within a complex, uncontrolled environment.

Funder

University of Auckland

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3