Abstract
Intraocular stability during or after cataract and glaucoma filtration surgeries and vitreous surgery with a gas/silicone oil tamponade might differ among intraocular lenses (IOLs). We used six different one-piece IOL models and measured the force that displaced the IOLs from the vitreous cavity to anterior chamber as a measure of stability against the pressure gradient between the anterior and posterior IOL surfaces. We measured IOL hardness, haptics junction area, and posterior IOL bulge to identify what determines the IOL displacement force. The KOWA YP2.2 IOL (1.231 mN) required significantly greater force than the HOYA XY1 (0.416 mN, p = 0.0004), HOYA 255 (0.409 mN, p = 0.0003), Alcon SN60WF (0.507 mN, p = 0.0010), and Nidek NS60YG (0.778 mN, p = 0.0186) IOLs; J&J ZCB00V IOL (1.029 mN) required greater force than the HOYA XY1 (p = 0.0032) and HOYA 255 (p = 0.0029) IOLs; the Nidek NS60YG IOL required greater force than the HOYA 255 (p = 0.0468) IOL. The haptics junction area was correlated positively with the IOL displacement force (r = 0.8536, p = 0.0306); the correlations of the other parameters were non-significant. After adjusting for any confounding effects, the haptics junction area was correlated significantly with the IOL displacement force (p = 0.0394); the IOL hardness (p = 0.0573) and posterior IOL bulge (p = 0.0938) were not. The forces that displace IOLs anteriorly differed among one-piece soft-acrylic IOLs, and the optics/haptics junction area was the major force determinant.
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献