Size Effect on Mechanical Properties and Deformation Behavior of Pure Copper Wires Considering Free Surface Grains

Author:

Hou Yu,Mi Xujun,Xie Haofeng,Zhang Wenjing,Huang Guojie,Peng Lijun,Feng Xue,Yang Zhen

Abstract

The size (grain size and specimen size) effect makes traditional macroscopic forming technology unsuitable for a microscopic forming process. In order to investigate the size effect on mechanical properties and deformation behavior, pure copper wires (diameters range from 50 μm to 500 μm) were annealed at different temperatures to obtain different grain sizes. The results show that a decrease in wire diameter leads to a reduction in tensile strength, and this change is pronounced for large grains. The elongation of the material is in linear correlation to size factor D/d (diameter/grain size), i.e., at the same wire diameter, more grains in the section bring better plasticity. This phenomenon is in relationship with the ratio of free surface grains. A surface model combined with the theory of single crystal and polycrystal is established, based on the relationship between specimen/grain size and tensile property. The simulated results show that the flow stress in micro-scale is in the middle of the single crystal model (lower critical value) and the polycrystalline model (upper critical value). Moreover, the simulation results of the hybrid model calculations presented in this paper are in good agreement with the experimental results.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring mechanical behavior at interfaces of laser powder bed fusion (LPBF) deposits on wrought Inconel 718: an indentation-based approach;Rapid Prototyping Journal;2024-09-10

2. Experimental and computational study of the NiTi thin wires mechanical behavior;Mechanics of Advanced Materials and Structures;2024-04-18

3. Effect of drawing speed on the deformation characteristics, microstructure and properties of copper wire rod;Materials Science and Engineering: A;2024-02

4. Modeling of size effects and size effect–induced behaviors and phenomena;Size Effects in Engineering Mechanics, Materials Science, and Manufacturing;2024

5. Size effect affected damage and fracture;Size Effects in Engineering Mechanics, Materials Science, and Manufacturing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3