Identification of Kynurenic Acid-Induced Apoptotic Biomarkers in Gastric Cancer-Derived AGS Cells through Next-Generation Transcriptome Sequencing Analysis

Author:

Kim Hun HwanORCID,Ha Sang EunORCID,Park Min Yeong,Jeong Se Hyo,Bhosale Pritam BhagwanORCID,Abusaliya AbuyaseerORCID,Won Chung Kil,Heo Jeong Doo,Ahn Meejung,Seong Je KyungORCID,Kim Hyun Wook,Kim Gon SupORCID

Abstract

Understanding the triggers and therapeutic targets for gastric cancer, one of the most common cancers worldwide, can provide helpful information for the development of therapeutics. RNA sequencing technology can be utilized to identify complex disease targets and therapeutic applications. In the present study, we aimed to establish the pharmacological target of Kynurenic acid (KYNA) for gastric cancer AGS cells and to identify the biological network. RNA sequencing identified differentially expressed genes (DEGs) between KYNA-treated and untreated cells. A total of 278 genes were differentially expressed, of which 120 genes were up-regulated, and 158 genes were down-regulated. Gene ontology results confirmed that KYNA had effects such as a reduction in genes related to DNA replication and nucleosome organization on AGS cells. Protein–protein interaction was confirmed through STRING analysis, and it was confirmed that cancer cell growth and proliferation were inhibited through KEGG, Reactome, and Wiki pathway analysis, and various signaling pathways related to cancer cell death were induced. It was confirmed that KYNA treatment reduced the gene expression of cancer-causing AP-1 factors (Fos, Jun, ATF, and JDP) in AGS cell lines derived from gastric cancer. Overall, using next-generation transcriptome sequencing data and bioinformatics tools, we confirmed that KYNA had an apoptosis effect by inducing changes in various genes, including factor AP-1, in gastric cancer AGS cells. This study can identify pharmacological targets for gastric cancer treatment and provide a valuable resource for drug development.

Funder

National Research Foundation of Korea funded by the Ministry of Science and ICT

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3